Calculus II	Name:
Study Guide 21	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (3 points) Use integration techniques to find the centroid of the region bounded by y = 2, x = 2, x = 0, and y = 0. Drawing required.

2. (5 points) Use integration techniques to find the centroid of the region bounded by y = 4and $y = x^2$. Drawing required. 3. (6 points) Use integration techniques to find the centroid of the region bounded by y = xand $y = x^2$. Drawing required.

4. (7 points) Use integration techniques to find the centroid of the region bounded by $x = y^3, x + y = 2$ and y = 0. Drawing required.

4. _____

3. _

5. (8 points) Use integration techniques to find the centroid of the region bounded by $y = e^x$, y = 0, x = 1, and x = 2. Drawing required.

5. _

6. (5 points) Use the Theorem of Pappus to find the volume of the solid obtained by rotating the region bounded by $(x - 2)^2 + y^2 = 1$ about x = 0. Drawing required.

6. _____

7. (8 points) Use the Theorem of Pappus to find the volume of the solid obtained by rotating the triangle with vertices (2,3), (2,5), and (5,4) about y = 0. Drawing required.

7. _____

8. (8 points) Use the Theorem of Pappus to find the volume of the solid obtained by rotating the region bounded by $f(x) = 4x - x^2$ and y = 0 about y = -2. Drawing required.

8. _____